- Conjectura Legendre: Enunt: Intre patratele orecaror doua numere consecutive, exsista cel putin un numar prim.
Rezolvare: Trebue de demonstrat caci intre
si
exista cel putin un numar prim.
Intrucit limitele intervalului studiat cert nu pot fi numere prime conform "link- distanta max dintre 2 nr. prime" intre aceste intervale exista cel putin 2 numere prime
Intrucit limitele intervalului studiat cert nu pot fi numere prime conform "link- distanta max dintre 2 nr. prime" intre aceste intervale exista cel putin 2 numere prime
Aceasta e simplu in formula
(1) in loc de
inlocuim
si determinam valoare lui k (fiind solutia ecuatiei).
Apoi daca exista in acel interval (x^2, (x+1)^2) cel putin 2 numere prime (deoarece capetele nu sunt numere prime), atunci noi va trebui sa lucram nu cu k ci cu k-2.
Apoi daca exista in acel interval (x^2, (x+1)^2) cel putin 2 numere prime (deoarece capetele nu sunt numere prime), atunci noi va trebui sa lucram nu cu k ci cu k-2.
Apoi verificam daca inegalitatea este adevarata (atunci si conjectura e adevarata in caz contrar nu putem spune nimic despre conjectura):
- Conjectura lui Brocard: Enunt: Intre patratele orecaror doua numere prime consecutive, exsista cel putin patru numere prime
Rezolvare: Daca pentru distanta minima dintre cele 2 numere consecutive prime se respecta conjectura, atunci atit mai mult si pentru restul cazurilor.
La fel ca in cazul de mai sus in acest interval exista cel putin 2 numere prime.
La fel ca in cazul de mai sus in acest interval exista cel putin 2 numere prime.
Adica trebue de demonstrat: Caci intre
si
exista cel putin 4 nr prime. Aceeasi tehnica de rezolvare ca si mai sus:
Rezolvare: Trebue de verificat egalitatea (daca e adevarata, e adevarata conjectura, daca e falsa atunci nu se stie daca e falsa conjectura sau nu):
- Conjectura lui Oppermann: Enunt: Intre
si
; la fel intre
si
,
, permament exsista cel putin un numar prim.
Rezolvare: Trebue de verificat sistemul (daca e adevarat inegalitatile din sistem e adevarata conjectura, daca e falsa atunci nu se stie daca e falsa conjectura sau nu):
![](https://latex.codecogs.com/gif.latex?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%28M%28x%5E%7B2%7D-x%29+1%29%7C%5Ccirc%20m%28x%29%5Cleq%20x%5E%7B2%7D%5C%5C%20%28M%28x%5E%7B2%7D%29+1%29%7C%5Ccirc%20m%28x%29%5Cgeq%20x%5E%7B2%7D+x%20%5Cend%7Bmatrix%7D%5Cright.)
- Conjectura lui Andrica: Enunt: Diferența radicalilor a două numere prime consecutive este întotdeauna mai mică decât 1 adica :![](https://latex.codecogs.com/gif.latex?%5Csqrt%7Bp_%7Bn+1%7D%7D-%5Csqrt%7Bp_%7Bn%7D%7D%3C1)
Rezolvare: Inegalitatea de mai sus se rezuma la :
![](https://latex.codecogs.com/gif.latex?p_%7Bn%7D%3Cp_%7Bn+1%7D-2%5Csqrt%7Bp_%7Bn+1%7D%7D+1)
Deoarece
atunci:
![](https://latex.codecogs.com/gif.latex?p_%7Bn%7D%3Cp_%7Bn+1%7D-2%5Csqrt%7Bp_%7Bn+1%7D%7D+1%5Cleq%20k-2%5Csqrt%7Bk%7D+1)
Noi ne oprim sa rezolvam:
![](https://latex.codecogs.com/gif.latex?p_%7Bn%7D%5Cleq%20k-2%5Csqrt%7Bk%7D+1)
- este solutia ecuatiei (1) in functie de
.
- Conjectura lui Andrica: Enunt: Diferența radicalilor a două numere prime consecutive este întotdeauna mai mică decât 1 adica :
Rezolvare: Inegalitatea de mai sus se rezuma la :
Deoarece
Noi ne oprim sa rezolvam:
Niciun comentariu:
Trimiteți un comentariu